Pozostale

 0    53 fiche    adamomasz
skriva ut spela Kontrollera dig själv
 
Fråga - Svar -
Algorytm Kruskala
börja lära sig
union-find Rozpatruje krawędzie w kolejności niemalejących wag i dodawaj do T te, które nie tworzą cyklu z poprzednio dodanymi, pozostałe odrzucaj, do momentu, gry T nie tworzy drzewa rozpinającego.
Graf planarny
börja lära sig
graf, który można narysować na płaszczyźnie bez przecięć krawędzi.
Rysunek płaski
börja lära sig
rysunek grafu planarnego taki, gdzie nie przecinają się krawędzie.
Liczba przecięć -
börja lära sig
cr(G) - najmniejsza możliwa liczba przecięć krawędzi w dowolnym rysunku grafu G na płaszczyźnie. Miara “nieplanarności” grafu.
Grubość grafu
börja lära sig
najmniejsza liczba „przezroczystych warstw” zawierających rysunki płaskie podgrafów G, które „złożone” dałyby graf G.
Ściana
börja lära sig
dowolny maksymalny obszar spójny nie będący częścią grafu (krawędzią ani wierzchołkiem) w tym rysunku płaskim.
Ściana nieskończona
börja lära sig
jedyna ściana nieograniczona (powyżej: f4 ).
Rzut stereograficzny
börja lära sig
G=kładziemy sferę na płaszczyźnie ● Rysujemy dowolny obiekt na sferze (Uwaga: nie można tylko rysować po wierzchołku sfery) ● Rzut stereograficzny stanowi cień,
jaki rzucałby rysunek gdyby umieścić punktowe źródła światła w wierzchołku sfery
Graf wielościanu
börja lära sig
graf utworzony przez wierzchołki i krawędzie wielościanu
Graf geometrycznie dualny G*
börja lära sig
zastępujemy każdą ścianę G wierzchołkiem w G* ● 2 wierzchołki w G* są połączone krawędzią w G* ⇔ istnieje odpowiadająca im krawędź w G, która rozgranicza odpowiednie ściany w G.
Graf abstrakcyjnie dualny
börja lära sig
- czyli istnieje taka wzajemnie jednoznaczna relacja między zbiorami krawędzi G i G ∗, że cykle w G odpowiadają krawędziom w G ∗
k-kolorowanie wierzchołków
börja lära sig
- Przez kolorowanie wierzchołków grafu G nazywamy takie przyporządkowanie każdemu z jego wierzchołków pewnego koloru, reprezentowanego umownie przez liczbę naturalną, że żadne dwa sąsiednie wierzchołki nie mają przyporządkowanego tego samego koloru. G
. k-chromatyczny
börja lära sig
gdzie liczba chromatyczna 𝜒(G) wynosi k.
Liczba chromatyczna 𝜒(G)
börja lära sig
najmniejsza liczba k taka, że graf jest k-kolorowalny.
k-kolorowalnosc krawędzi
börja lära sig
Graf jest k-kolorowalny(e) (k-kolorowalny krawędziowo) jeżeli jego krawędzie można pokolorować tak, że żadne dwie krawędzie incydentne z tym samym wierzchołkiem nie mają tego samego koloru.
Indeks chromatyczny𝜒’(G)
börja lära sig
najmniejsza taka liczba k, że graf G jest k-kolorowalny(e), czyli krawędziowo.
Funkcja chromatyczna,
börja lära sig
Funkcją chromatyczną PG (k) grafu G nazywamy funkcję, której wartość to liczba sposobów pokolorowania wierzchołków grafu G przy pomocy k kolorów
Średnica grafu -
börja lära sig
diam(G): maksymalna odległość między wierzchołkami w tym grafie.
Ekscentryczność wierzchołka
börja lära sig
ecc(v): maksymalna odległość od innego wierzchołka.
Promień grafu
börja lära sig
rad(G): minimalna ekscentryczność wierzchołka w tym grafie.
Wierzchołek centralny
börja lära sig
o minimalnej ekscentryczności
Centrum grafu
börja lära sig
graf indukowany na zbiorze wierzchołków centralnych grafu G.
Dualność
börja lära sig
Istnieją zagadnienia optymalizacyjne posiadające specyficzną cechę „dualności”, tzn. zadanie maksymalizacji pewnej funkcji jest równoważne zagadnieniu minimalizacji innej funkcji.
. Zbiór niezależny
börja lära sig
- taki podzbiór X wierzchołków, że żadne dwa różne wierzchołki z X nie są sąsiednie.
. Pokrycie wierzchołkowe
börja lära sig
w grafie G = (V, E) nazywamy taki podzbiór X wierzchołków V, że każda krawędź z E jest incydentna z co najmniej jednym wierzchołkiem z X.
Sieć przepływowa
börja lära sig
- Sieć przepływowa ze źródłem s i ujściem t to graf skierowany G = (V, E) z wymiernymi, nieujemnymi wagami na krawędziach danymi przez funkcję (przepustowość) c: E → Q+,
przy czym indeg(s) = 0 i outdeg(t) = 0. Wagę c(e) krawędzi e ∈ E nazywamy przepustowością krawędzi.
Przepływ
börja lära sig
Przepływ w sieci G z funkcją przepustowości c: E → Q+ to taka funkcja f: E → Q+ ∪ {0}, która spełnia warunki: ● f (e) ≤ c(e) dla każdej krawędzi e ∈ E (nieprzekraczalność przepustowości)
dla każdego wierzchołka poza s i t zachodzi: prawo zachowania przepływu w węzłach
Ścieżka powiększająca
börja lära sig
ścieżka powiększająca dany przepływ f to taka ścieżka nieskierowana (tzn. krawędzie
● każda krawędź e skierowana od źródła do ujścia jest nienasycona (krawędź nasycona to spełniająca warunek: f(e) = c(e)) ● dla każdej krawędzi ścieżki e skierowanej przeciwnie (od ujścia do źródła) f (e) > 0.
Łańcuchy Markowa
börja lära sig
macierz prawdopodobieństwa przejść P wymiaru n x n wraz z n-wymiarowym wektorem wierszowym x
Klasyfikacja stanów (Markowa)
börja lära sig
powracający wtedy i tylko wtedy, gdy będąc w nim w momencie t prawdopodobieństwo ponownego bycia w nim w pewnym czasie t’ > t wynosi 1 (na pewno wrócimy) • chwilowy wtedy i tylko wtedy gdy nie jest powracający
• pochłaniający wtedy i tylko wtedy gdy prawdopodobieństwo przejścia w jednym kroku z v do innego stanu wynosi 0 • okresowy o okresie 1 < τ ∈ N wtedy i tylko wtedy gdy powrócić do stanu v można tylko po liczbie kroków będącej wielokrotnością τ
Liczba drzew rozpinających grafu pełnego)
börja lära sig
Graf pełny Kn ma dokładnie n n-2 drzew rozpinających
charakteryzacja dwudzielnych przez cykle)
börja lära sig
Jeżeli graf jest dwudzielny, to nie zawiera cykli nieparzystych!
Tw. Eulera "charakteryzacja grafów eulerowskich przez stopnie wierzchołków)
börja lära sig
Graf spójny jest Eulerowski wtedy i tylko wtedy, gdy każdy jego wierzchołek ma stopień parzysty.
Tw. Orego):
börja lära sig
Jeśli graf prosty G ma n wierzchołków (gdzie n ≥ 3) oraz deg(v) + deg(w) ≥ n dla każdej pary wierzchołków niesąsiednich v i w, to graf G jest hamiltonowski.
Tw. Cayleya
börja lära sig
Istnieje n n-2 różnych n-wierzchołkowych drzew etykietowanych.
Kodowanie prufera
börja lära sig
1. znalezienia liscia ktory ma najmniejsza etykiete, dodanie sasiada do zbioru S i usuniecie z grafu tego liscia, powtarzaj az graf stanie sie K2
(Nieplanarność K3,3 i K5 ):
börja lära sig
Grafy K5 i K3,3 nie są planarne (tzw. Grafy Kuratowskiego) (dowód polega na bezpośrednim sprawdzeniu wszystkich możliwości narysowania) Wniosek: Jeśli graf zawiera graf Kuratowskiego jako podgraf to jest nieplanarny
(Tw. Kuratowskiego):
börja lära sig
Dany graf jest planarny ⇔ nie zawiera podgrafu homeomorficznego z grafem K5 lub z grafem K3,3.
"Formuła Eulera" dla płaszczyzny):
börja lära sig
Niech G będzie rysunkiem płaskim spójnego grafu płaskiego i niech n, m i f oznaczają odpowiednio liczbę wierzchołków, krawędzi i ścian grafu G. Wtedy n - m + f = 2
Idempotentność operacji dualności)
börja lära sig
Jeśli graf G jest spójnym grafem płaskim, to graf G** jest izomorficzny z grafem G.
Zależność rozcięć i cykli przy dualności)
börja lära sig
Niech G będzie grafem planarnym i niech G* będzie grafem geometrycznie dualnym do grafu G. Wówczas zbiór krawędzi grafu G tworzy cykl w G ⇔ odpowiadający mu zbiór krawędzi grafu G* jest rozcięciem w G*.
Symetryczność abstrakcyjnej dualności)
börja lära sig
Jeżeli G* jest grafem abstrakcyjnie dualnym do grafu G, to graf G jest abstrakcyjnie dualnym do grafu G*
(d+1)-kolorowalność, gdzie d max stopień)
börja lära sig
Jeśli G jest grafem prostym, w którym największym stopniem wierzchołka jest Δ, to graf G jest (Δ+1)-kolorowalny
Tw. Brooksa)
börja lära sig
eśli G jest spójnym grafem prostym, niebędącym grafem pełnym, i jeśli największy stopień wierzchołka grafu G wynosi Δ (gdzie Δ ≥ 3), to graf G jest Δ-kolorowalny.
6-kolorowalność planarnych prostych
börja lära sig
Każdy planarny graf prosty jest 6-kolorowalny.
2-kolorowalność map eulerowskich)]
börja lära sig
Mapa G jest 2-kolorowalna(f) ⇔ graf G jest grafem eulerowskim.
k-kolorowalność(f)
börja lära sig
mapa jest k-kolorowalna(f) ⇔ jej ściany można tak pokolorować k kolorami, że po obu stronach każdej krawędzi jest inny kolor
kolorowalność przy dualności)]
börja lära sig
Niech G będzie grafem planarnym bez pętli i niech G* będzie grafem geometrycznie dualnym do grafu G. Wówczas graf G jest k-kolorowalny(v) ⇔ gdy graf G* jest k-kolorowalny(f). Wniosek: Każda mapa jest 4-kolorowalna
Tw. Vizinga
börja lära sig
: Jeśli G jest grafem prostym, w którym największy stopień wierzchołka wynosi Δ, to: Δ ≤ χ ’(G) ≤ Δ+1 (gdzie χ ’(G) to indeks chromatyczny).
algorytm Fleury'ego
börja lära sig
1. Zacznij cykl w dowolnym wierzchołku a. Usuwaj z grafu przechodzone krawędzie i wierzchołki izolowane powstające w wyniku usuwania tych krawędzi b. W każdym momencie przechodź przez most tylko wtedy, gdy nie masz innej możliwości. u
Tw. Forda Fulkersona -
börja lära sig
Wartość maksymalnego przepływu w każdej sieci zawsze równa jest minimalnej wartości przekroju w tej sieci.
Przekrój sieci
börja lära sig
rozcięcie w grafie reprezentującym sieć, które oddziela źródło od ujścia.
Twierdzenie o kojarzeniu małżeństw
börja lära sig
Warunek konieczny i wystarczający rozwiązania problemu kojarzenia małżeństw to by dla każdego zbioru k dziewcząt ze zbioru V1 wszystkie one znały co najmniej k chłopców ze zbioru V2.

Du måste vara inloggad för att skriva en kommentar.