Fråga |
Svar |
Suppose we want to arrange the n numbers stored in an array such that all negative values occur before all positive ones. The minimum number of exchanges required in the worst case is: börja lära sig
|
|
|
|
|
The time complexity of linear search is given by: börja lära sig
|
|
|
|
|
a = 0 N=1000 for i in range(0, N,1): for j in range(N, 0,-1): a = a + i + j; print(a) The running time is: börja lära sig
|
|
|
|
|
The complexity of recursive Fibonacci series is börja lära sig
|
|
|
|
|
N=5 a = 0 i = N while (i > 0): a = a + i; i = i/2; The running time is: börja lära sig
|
|
|
|
|
Consider the following function: T(n) = n if n ≤ 3 T(n) = T(n-1) + T(n-2) - T(n-3) otherwise The running time is: börja lära sig
|
|
|
|
|
The time complexity of an algorithm T(n), where n is the input size, is given by T(n) = T(n - 1) + 1/n if n > 1 The order of this algorithm is börja lära sig
|
|
|
|
|
Which of the following best describes the useful criterion for comparing the efficiency of algorithms? börja lära sig
|
|
|
|
|
Which of the following is not O(n2)? börja lära sig
|
|
|
|
|
Suppose T(n) = 2T(n/2) + n, T(0) = T(1) = 1 Which one of the following is false börja lära sig
|
|
|
|
|
The following statement is valid. log(n!) = \theta (n log n). börja lära sig
|
|
|
|
|
To verify whether a function grows faster or slower than the other function, we have some asymptotic or mathematical notations, which is_________. börja lära sig
|
|
Big Omega Ω (f), Big Oh O (f), Big Theta θ (f)
|
|
|
An algorithm performs lesser number of operations when the size of input is small, but performs more operations when the size of input gets larger. State if the statement is True or False or Maybe. börja lära sig
|
|
|
|
|
An algorithm that requires ........ operations to complete its task on n data elements is said to have a linear runtime. börja lära sig
|
|
|
|
|
The complexity of adding two matrices of order m*n is börja lära sig
|
|
|
|
|
The order of an algorithm that finds whether a given Boolean function of 'n' variables, produces a 1 is börja lära sig
|
|
|
|
|
The concept of order (Big O) is important because börja lära sig
|
|
|
|
|
When we say an olgorithm has a time complexity of O(n), what does it mean? börja lära sig
|
|
The computation time taken by the algorithm is proportional to n
|
|
|
What is recurrence for worst case of QuickSort and what is the time complexity in Worst case? börja lära sig
|
|
Recurrence is T(n) = T(n-1) + O(n) and time complexity is O(n^2)
|
|
|
Suppose we are sorting an array of eight integers using quicksort, and we have just finished the first partitioning with the array looking like this: 2 5 1 7 9 12 11 10 Which statement is correct? börja lära sig
|
|
The pivot could be either the 7 or the 9.
|
|
|
Which of the following is not an in-place sorting algorithm? börja lära sig
|
|
|
|
|
Running merge sort on an array of size n which is already sorted is börja lära sig
|
|
|
|
|
börja lära sig
|
|
|
|
|
Which of the following algorithm design technique is used in the quick sort algorithm? börja lära sig
|
|
|
|
|