izts wyklad kolos 1

 0    39 fiche    Pietruszka27.
skriva ut spela Kontrollera dig själv
 
Fråga Svar
Niech zmienna losowa ma ciągły rozkład jednostajny na odcinku [2,8]. Ile wynosi wariancja tej zmiennej losowej?
börja lära sig
3
Jakie założenia musi spełniać ciąg zmiennych losowych, aby zaszło Centralne twierdzenie graniczne?
börja lära sig
zmienne losowe muszą być niezależne, zmienne losowe muszą być mieć ten sam rozkład
Niech ciągła zmienna losowa X ma rozkład jednostajny na odcinku [-3, 5]. Ile wynosi F(3), czyli dystrybuanta w punkcie 3
börja lära sig
0,75
Jeżeli ciąg zmiennych losowych X1, X2,..., Xn zbiega do zmiennej losowej X z prawdopodobieństwem jeden, to wtedy zachodzi także
börja lära sig
zbieżność według rozkładu dla tego ciągu, zbieżność według prawdopodobieństwa dla tego ciągu
Niech dyskretna zmienna losowa X przyjmuje wartości -4, -3, 0, 3, 4 z równymi prawdopodobieństwami 1/5. Ile wynosi wariancja zmiennej losowej X?
börja lära sig
10
Wiemy, że zmienna losowa X przyjmuje tylko nieujemne wartości oraz, że jej wartość oczekiwana wynosi 4. Jakie górne oszacowanie prawdopodobieństwa P(X≥40)≤A możemy wyznaczyć z nierówności Markowa? Podaj liczbę A=
börja lära sig
0,1
Niech próba losowa przyjmuje następujące wartości: -2, -2, -1, 0, 0, 0, 1, 1, 2, 3, 3, 3, 3, 4, 4. Ile wynosi mediana z tej próby?
börja lära sig
1
Zaznacz poprawne odpowiedzi. Metoda największej wiarygodności to:
börja lära sig
metoda wyznaczania estymatorów parametrów rozkładu, metoda polegająca na szukaniu maksimum iloczynu funkcji gęstości
Zaznacz poprawne odpowiedzi. Metoda momentów to:
börja lära sig
metoda wyznaczania estymatorów parametrów rozkładu, metoda polegająca na przyrównywaniu momentów teoretycznych rozkładu do momentów próbkowych tych samych rzędów
Gra "Lotto" polega na wyborze 6 liczb z 49. W jaki sposób obliczysz, ile podzbiorów liczb może zostać wylosowanych? Trzeba skorzystać z:
börja lära sig
kombinacji bez powtórzeń
Aksjomatem rachunku prawdopodobieństwa nie jest:
börja lära sig
prawdopodobieństwo iloczynu zdarzeń jest równe iloczynowi prawdopodobieństw tych zdarzeń
Niech zmienna losowa X ma rozkład normalny N(4,1). Ile wynosi P(X<4)?
börja lära sig
0,5
Zaznacz poprawną odpowiedź. Statystyka to:
börja lära sig
funkcja przypisująca wartości próbie losowej
Poprawna odpowiedź to: funkcja przypisująca wartości próbie losowej
börja lära sig
to zbiór zdarzeń elementarnych
Rozkład empiryczny można opisać za pomocą
börja lära sig
dystrybuanty empirycznej, histogramu
Zaznacz poprawne odpowiedzi. Niech (X1, X2,..., Xn) to próba losowa. Wtedy Xi:
börja lära sig
to zmienne losowe, są niezależne, mają ten sam rozkład
Zaznacz poprawne odpowiedzi. Jakimi własnościami charakteryzuje się dystrybuanta dowolnego rozkładu?
börja lära sig
dystrybuanta w minus nieskończoności wynosi 0, dystrybuanta w plus nieskończoności wynosi 1, dystrybuanta jest funkcją niemalejącą, dystrybuanta jest funkcją prawostronnie ciągłą
Zaznacz poprawną odpowiedź. Rozkład Poissona to rozkład ciągły czy dyskretny?
börja lära sig
dyskretny
Niech ciągła zmienna losowa X ma rozkład jednostajny na odcinku [-3, 3]. Ile wynosi P(X<4)?
börja lära sig
1
Zaznacz poprawną odpowiedź. Średnia arytmetyczna wartości przyjmowanych przez próbę losową to:
börja lära sig
estymator średniej
Zaznacz poprawną odpowiedź. Czy całka z funkcji gęstości po argumentach od minus nieskończoności do p ma wartość równą dystrybuancie w punkcie p?
börja lära sig
Tak
Histogram to estymator:
börja lära sig
gęstości prawdopodobieństwa
Prawdopodobieństwo całkowite jest definiowane dla:
börja lära sig
tylko dla podziału przestrzeni zdarzeń elementarnych
Niech dyskretna zmienna losowa X przyjmuje wartości 5, 6, 7, 8, 9 z równymi prawdopodobieństwami 1/5. Ile wynosi wartość oczekiwana zmiennej losowej X?
börja lära sig
: 7
Zaznacz poprawną odpowiedź. Wiemy, że zmienna losowa ma rozkład gamma Γ(1,4) z parametrami 1 i 4. Jaką inną nazwę ma ten rozkład dla tych konkretnych parametrów?
börja lära sig
wykładniczy Exp(4)
Centralne twierdzenie graniczne mówi, że:
börja lära sig
rozkład średniej próbkowej zbiega do rozkładu normalnego
Niech ciągła zmienna losowa ma rozkład jednostajny na odcinku [1.75, 2.25]. Ile wynosi wartość funkcji gęstości dla argumentu równego 2
börja lära sig
2
Niech zmienna losowa ma rozkład o gęstości postaci: f(x)=122π√exp(−12(x−52)2) Ile wynosi wariancja tej zmiennej losowej?
börja lära sig
4
Operacją z zakresu kombinatoryki nie jest:
börja lära sig
wariancja
Zaznacz poprawną odpowiedź. Czy dowolna funkcja, której całka po całej przestrzeni wynosi jeden, jest gęstością pewnego rozkładu prawdopodobieństwa?
börja lära sig
Tak
Dzieciom dano do wyboru zeszyty z bajkowymi postaciami na okładkach: Kubusiem Puchatkiem, Smerfami bądź Świnką Peppą. Każdy z zeszytów może być w kratkę lub w linie.
börja lära sig
zasady iloczynu
Zaznacz poprawną odpowiedź. Wiemy, że zmienna losowa ma rozkład wykładniczy, a jej wariancja wynosi 1/25. Ile wynosi jej wartość oczekiwana?
börja lära sig
1/5
Treść pytania Niech dyskretna zmienna losowa X przyjmuje wartości -3, -2, 4, 5 z równymi prawdopodobieństwami 1/4. Ile wynosi wartość oczekiwana zmiennej losowej Y=10X-5?
börja lära sig
5
Niech ciągła zmienna losowa ma rozkład jednostajny na odcinku [0, 2]. Ile wynosi wartość oczekiwana tej zmiennej losowej?
börja lära sig
1
Treść pytania Niech dyskretna zmienna losowa X przyjmuje wartości -100, 20, 100, 200 z równymi prawdopodobieństwami 1/4.
börja lära sig
55
Niech dyskretna zmienna losowa X przyjmuje wartości -3, -2, 4, 5 z równymi prawdopodobieństwami 1/4. Ile wynosi funkcja masy prawdopodobieństwa dla argumentu równego -2?
börja lära sig
1/4
Wzór Stirlinga pozwala na przybliżenie liczby:
börja lära sig
permutacji
Niech zmienna losowa ma rozkład normalny N(6, 4). Ile wynosi mediana dla tej zmiennej losowej?
börja lära sig
6
Rozkład opisujący prawdopodobieństwo zajścia pewnej liczby "sukcesów" w n niezależnych losowaniach (n>1) pomiędzy dwoma zdarzeniami (zwanych zwyczajowo "sukces" i "porażka") to rozkład:
börja lära sig
dwumianowy

Du måste vara inloggad för att skriva en kommentar.